

Wichtige Info für den Konstrukteur!

Legende

Deutliche Kennzeichnung der Zurrkraft LC in daN.

2-fache Sicherheit gegen Bruch bei Zurrpunkten.

Zurrpunkt ist in allen möglichen Richtungen belastbar.

Haltefeder hält das Einhängeglied/den Einhängebügel in eingestellter Position – verhindert Klappern und vereinfacht das

Zurrpunkt besitzt die Fähigkeit sich 360° zu drehen.

Zurrpunkt besitzt im Einhängeglied einen Schwenkbereich von XXX° (stellvertretend für die unterschiedlichen Werte).

Gewindeart des Zurrpunktes. M = metrisch.

Fordern Sie auch den Anschlagpunkte-Katalog an!

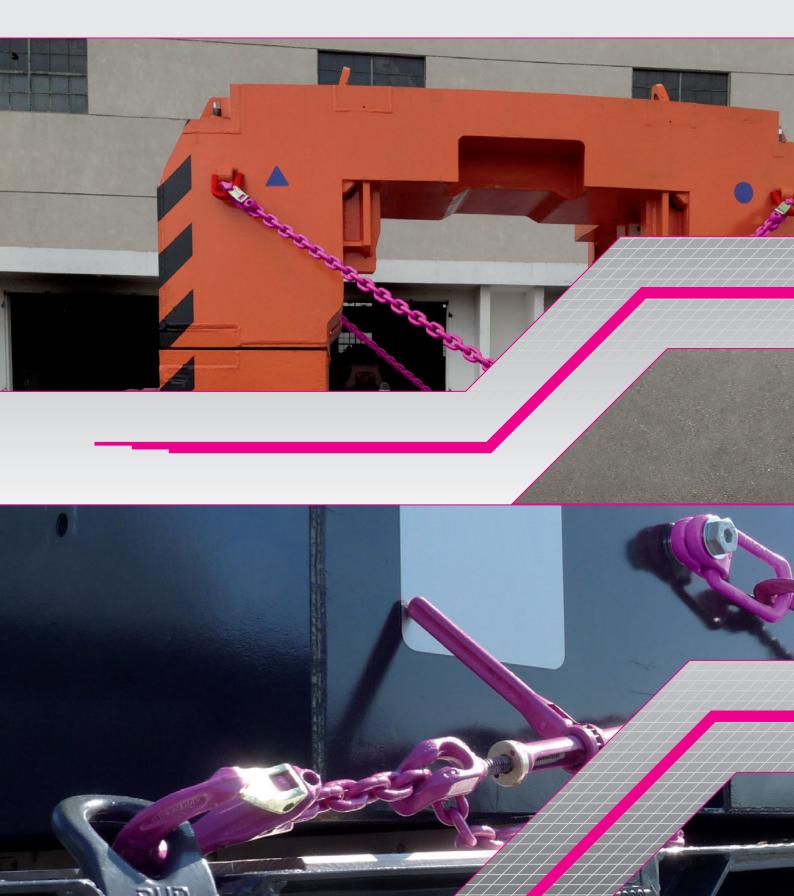
RUD Anschlagpunkte Professionelle Lösungen für jede Konstruktion

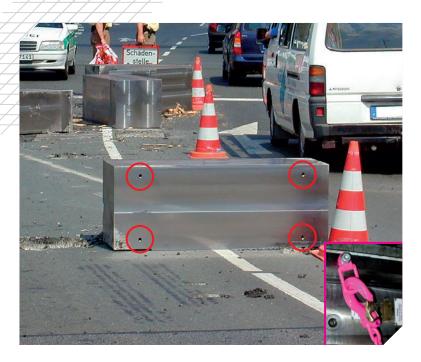
Finden Sie Lösungen um Ihre Konstruktion auch sicher zu heben:

- Über 700 Varianten
- Geprüfte Qualität
- Schraubbar / schweißbar
- 0,1 t − 250 t Tragfähigkeit

SCHWEISSBAR

RUD-Zurrpunkte LC 3.000 daN - 32.000 daN


SCHRAUBBAR



05

ZURRPUNKTE

Einführung in die Ladungssicherung

Beim Transport schwerer Maschinen oder Bauteile können enorme Kräfte an der Ladung zerren. Die erforderlichen Rückhaltekräfte, um die Ladung auf der Ladefläche zu halten, werden durch eine Direktzurrung zuverlässig übertragen.

Grundvoraussetzung für eine Direktzurrung ist jedoch das Vorhandensein von Zurrpunkten an der Ladung und auf der Ladefläche. Richtige Ladungssicherung beginnt also bereits in der Konstruktionsphase und fällt auch in den Verantwortungsbereich des Konstrukteurs bzw. des Herstellers.

Maschinenrichtlinie 2006/42/EG

Dass Ladungssicherung auch Sache des Konstrukteurs ist, ist aus verschiedenen Gesetzen und technischen Richtlinien zu entnehmen.

Die Maschinenrichtlinie 2006/42/EG, welche seit Ende 2009 verbindliches europäisches Recht darstellt, fordert: "Die Maschine oder jedes ihrer Bestandteile müssen sicher gehandhabt und transportiert werden können; …" Damit ist transportgerechtes Konstruieren für dem Maschinenkonstrukteur unumgänglich.

Der § 22 StVO, Abs. 1 schreibt vor, dass Ladung zu sichern ist und dabei die anerkannten Regeln der Technik zu beachten sind. Anerkannte Regeln der Technik sind vor allem DIN- und EN-Normen sowie VDI-Richtlinien. Der § 22 StVO, Abs. 1 hat keinen spezielen Adressaten, sondern gilt für jeden der sich auf verantwortliche Weise mit

der Ladung beschäftigt. Das bedeutet, Normen und Richtlinien zum Thema Ladungssicherung müssen auch vom Konstrukteur berücksichtigt werden.

Besonders zu erwähnen ist in diesem Zusammenhang die DIN EN 474-1 "Erdbaumaschinen - Sicherheit – Teil 1: Allgemeine Anforderungen".

Sie fordert, dass Erdbaumaschinen (deutlich gekennzeichnete) Zurrpunkte aufweisen müssen.

Die VDI 2700-13 "Ladungssicherung auf Straßenfahrzeugen — Großraumund Schwertransporte" wird hier noch präziser und fordert, dass nötigenfalls bereits in der Konstruktionsphase zwischen Hersteller und Transportplaner eine entsprechende technische Abstimmung zu erfolgen hat.

Lastkraftwagen, Anhänger und Sattelanhänger mit Pritschenaufbauten müssen schon seit längerer Zeit mit Verankerungen (Zurrpunkten) für Zurrmittel zur Ladungssicherung ausgerüstet werden. Diese Mussforderung ist in der DGUV Vorschrift 70 (Fahrzeuge) enthalten. Zur Umsetzung sei entsprechend auf die DIN-EN 12640 "Zurrpunkte an Nutzfahrzeugen zur Güterbeförderung" verwiesen.

Trotz bestehendem Regelwerk treten bei der Handhabung in der Praxis häufig Probleme auf. Es hilft der Blick in die Praxis und die enge Zusammenarbeit zwischen Transporttechniker und Konstrukteur.

Achtung: Seit März 2017 ist die ISO 15818 in Kraft. Sie definiert erstmals weltweit Anforderungskriterien von Anschlag- und Zurrpunkten für Endbaumaschinen. Alle RUD Anschlag- und Zurrpunkte erfüllen die Normforderungen.

GRUNDSÄTZE

Richtige Ladungssicherung

Im Folgenden einige praktische Konstruktionsgrundsätze

- Zurrpunkte sollten frei zugänglich sein.
- Die Zurrpunktform sollte ein Schließen der Klappsicherung des Zurrhakens erlauben.
- Zurrpunkte sollten an die Form der Zurrhaken angepasst sein und keine zusätzlichen Adapterelemente wie z.B. Schäkel erfordern.
- Zurrpunkte sollten die korrekte Belastung des angeschlossenen Zurrhakens gewährleisten (Belastung im Hakengrund / keine Biegebeanspruchung)
- Die Positionierung des Zurrpunktes sollte ein Zurren im direkten Strang ermöglichen ohne Zurrmittelumlenkungen über Bauteilkanten.
- / Die Positionierung des Zurrpunkts sollte die Einhaltung sinnvoller Zurrwinkel ermöglichen Referenzwert α ; $\beta \approx 30^{\circ}$

- Zurrpunkte sollten deutlich als solche erkennbar und mit ihrer zulässigen Zugkraft gekennzeichnet sein.
- Zurrpunkte sollten in ausreichender Anzahl und Zugkraft vorhanden sein.
- Zurrpunkte sollten bei Beschädigung leicht auszutauschen sein.
- Zurrpunkte sollten vor ihrem Versagen durch Überlastung eine ausgeprägte plastische Verformung aufweisen um Beschädigungen erkennbar zu machen.
- Die Nennzugkraft eines Zurrpunktes sollte in allen zu erwartenden Belastungsrichtungen einleitbar sein; am besten sollte er allseitig belastbar sein.
- Zurrpunkte sollten 2-fache Sicherheit gegenüber Bruch aufweisen.

Häufig werden Anschlagpunkte für Zurrzwecke verbaut. Diese stammen jedoch aus der Hebetechnik und sind daher nicht mit der zulässigen Zugkraft LC (Lashing Capacity [daN]) sondern mit ihrer Tragfähigkeit [t] gekennzeichnet. Achtung: Zurrpunkte und Anschlagpunkte unterliegen unterschiedlichen Sicherheitsfaktoren.

Um den Anforderungen der Praxis leichter gerecht zu werden, empfiehlt sich der Einsatz von hochfesten, geprüften und praxisbewährten RUD-Zurrpunkten. Sie erfüllen die genannten Anforderungen bis hin zur Prägung mit Ihrer zulässigen Zugkraft LC (Lashing Capacity [daN]) und bieten höchsten Qualitätsstandard "Made in Germany".

RUD hat eine komplette Palette von hochfesten Zurrpunkten entwickelt. Wie die Bilder zeigen (S.4), haben renommierte Hersteller von diesen Möglichkeiten bereits regen Gebrauch gemacht. Es handelt sich hierbei um geschmiedete, aus hochwertigem Legierungsstahl bestehende Ringösen. Neben den beliebten schweißbaren Varianten, welche von geprüften Schweißern auch nachgerüstet wer-

den können, gibt es auch schraubbare Zurrpunkte mit LC-Kennzeichnung aus dem Hause RUD.

Die CAD-Daten der RUD Zurrpunkte sind auf www.rud.com für die eigene CAD-Konstruktion abrufbar. Viele weitere Informationen zum Thema Ladungssicherung enthält unser Fachaufsatz "Optimale Ladungssicherung" — einfach anfordern. Kostenlose Ladungssicherungs-Berechnungsprogramme befinden sich ebenfalls auf www.rud. com oder sind als App für iOS, Android, Windows Mobile-Phone im jeweiligen Store kostenlos downloadbar.

LADUNGSGEWICHT

Diagonalzurren nach DIN EN 12195-1: 2004 ∕ max. Ladungsgewicht in [t]

Zurrkraft (Lashing Capa 2.000 da 20.000 d siehe S.12	acity) N – laN	L-ABA Allseitig Belastbarer Zurrpunkt schweißbar						
Тур		2.000	3.200	6.400	10.000	20.000		
LC [daN]		2.000	3.200	6.400	10.000	20.000		
Vertikalwinkel	$\mu = 0,1$	3,5	5,6	11,2	17,5	35		
a: 0°-30°	$\mu = 0.2$	4,6	7,5	15	23,4	46,9		
	$\mu = 0.3$	5,8	9,2	18,5	29	58,1		
Horizontalwinkel β: 20°–45°	$\mu = 0.4$	7,2	11,6	23,2	36,4	72,8		
β	$\mu = 0.5$	9,7	15,5	31,1	48,6	97,3		
77-01	$\mu = 0.6$	14,6	23,4	46,8	73,1	146,3		
Vertikalwinkel	$\mu = 0,1$	2,5	4	8,1	12,8	25,6		
a: 30°-60°	$\mu = 0.2$	3,5	5,7	11,4	17,9	35,8		
	$\mu = 0.3$	5	8	16	25	50		
Horizontalwinkel β: 20°–45°	$\mu = 0.4$	7,1	11,4	22,8	35,6	71,3		
β	μ = 0,5	10,6	17,1	34,2	53,4	106,9		
(7—0)	$\mu = 0.6$	17,8	28,4	56,9	89	178		

ZURREN Zurrpunkte / schweißbar

	(Lash 3.0 32.	Zurrkraft ning Capacity) 00 daN — 000 daN siehe S.14					
3.000	5.000	8.000	13.400	20.000	32.000		Тур
3.000	5.000	8.000	13.400	20.000	32.000		LC [daN]
5,2	8,7	14	23,4	35	56	$\mu = 0,1$	Vertikalwinkel
7	11,7	18,7	31,4	46,9	75	$\mu = 0.2$	$\alpha: 0^{\circ}-30^{\circ}$
8,7	14,5	23,2	38,9	58,1	92,9	$\mu = 0.3$	
10,9	18,2	29,1	48,7	72,8	116,4	$\mu = 0.4$	Horizontalwinkel β: 20°-45°
14,5	24,3	38,9	65,2	97,3	155,6	$\mu = 0.5$	β
21,9	36,5	58,5	98	146,3	234	$\mu = 0.6$	
3,8	6,4	10,2	17,1	25,6	40,9	$\mu = 0,1$	Vertikalwinkel
5,3	8,9	14,3	23,9	35,8	57,2	$\mu = 0.2$	a: 30°-60°
7,5	12,5	20	33,5	50	80	$\mu = 0.3$	
10,7	17,8	28,5	47,8	71,3	114	$\mu = 0.4$	Horizontalwinkel β: 20°-45°
16	26,7	42,7	71,6	106,9	171	$\mu = 0.5$	β
26,7	44,5	71,2	119,3	178	284	$\mu = 0.6$	

LADUNGSGEWICHT

Diagonalzurren nach DIN EN 12195-1: 2004 ∕ max. Ladungsgewicht in [t]

Zurrkraft (Lashing Capacity)

8.000 daN - 32.000 daN

siehe S.18

LRBS-FIX
Lashing-Ringbock-FIX schweißba

LRBK-FIX
Lashing-Ringbock-Kante-FIX schweißbar

		Lasi	hing-Ringbocl	k-FIX schweiß	Lashing-kingbock-kante-rix scriwelisbai			
Тур		8.000	13.400	20.000	32.000	8.000	13.400	20.000
LC [daN]	l	8.000	13.400	20.000	32.000	8.000	13.400	20.000
Vertikalwinkel	$\mu = 0,1$	14	23,4	35	56	14	23,4	35
a: 0°-30°	$\mu = 0.2$	18,7	31,4	46,9	75	18,7	31,4	46,9
	$\mu = 0.3$	23,2	38,9	58,1	92,9	23,2	38,9	58,1
Horizontalwinkel β: 20°-45°	$\mu = 0.4$	29,1	48,7	72,8	116,4	29,1	48,7	72,8
β	$\mu = 0.5$	38,9	65,2	97,3	155,6	38,9	65,2	97,3
77—0	μ = 0,6	58,5	98	146,3	234	58,5	98	146,3
Vertikalwinkel	$\mu = 0,1$	10,2	17,1	25,6	40,9	10,2	17,1	25,6
a: 30°-60°	$\mu = 0.2$	14,3	23,9	35,8	57,2	14,3	23,9	35,8
	$\mu = 0.3$	20	33,5	50	80	20	33,5	50
Horizontalwinkel β: 20°-45°	$\mu = 0.4$	28,5	47,8	71,3	114	28,5	47,8	71,3
β	μ = 0,5	42,7	71,6	106,9	171	42,7	71,6	106,9
7/-0	μ = 0,6	71,2	119,3	178	284	71,2	119,3	178

ZURREN

Zurrpunkte ✓ schraubbar und schweißbar

-	//// ,,,			
7 7 7 7 7 7	SLP Star Lashing Point	LVLBG-PLUS Lashing-VIP-Lastbock-Gew.	(Lash 10.0 16. SLI	Zurrkraft hing Capacity) OO daN — OOO daN P siehe S.20 PLUS siehe S.24
	10.000	16.000		Тур
	10.000	16.000		LC [daN]
	17,5	28	$\mu = 0,1$	Vertikalwinkel
	23,4	37,4	$\mu = 0.2$	a: 0°-30°
	29	46,4	$\mu = 0.3$	
	36,4	58,2	$\mu = 0.4$	Horizontalwinkel β: 20°–45°
	48,6	77,7	μ = 0,5	β
	73,1	117	μ = 0,6	
	12,8	20,4	$\mu = 0,1$	Vertikalwinkel
	17,9	28,6	$\mu = 0.2$	α: 30°-60°
	25	40	$\mu = 0.3$	
	35,6	56,9	$\mu = 0.4$	Horizontalwinkel β: 20°-45°
	53,4	85,4	μ = 0,5	β
	89	142,4	μ = 0,6	

L-ABA

Allseitig belastbarer Zurrpunkt. Ideal für Rammen, Bohrgeräte, Walzen und Erdbewegungsmaschinen

Produktmerkmale

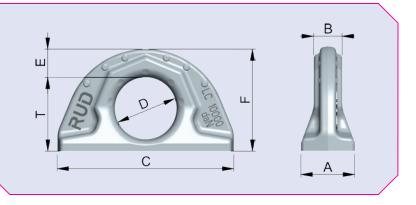
- Deutliche Kennzeichnung der Zurrkraft für alle Belastungsrichtungen. LC-Kennzeichnung in daN.
- Aus einem Stück geschmiedet, kein Klappern oder Ausschlagen selbst bei starken Vibrationen oder Erschütterungen, einfaches Einhängen des Zurrmittels möglich.
- Durch die Schweißnahtanordnung (umlaufende Kehlnaht) werden die Forderungen der DIN EN 1090 erfüllt, d.h. durch die geschlossene Naht können keine Spalt-Korrosionsansätze entstehen (damit für Konstruktionen im Freien einsetzbar). Werkstoff des Anschweißteils: 1.6541 (23MnNiCrMo52). Anschweißhinweise in der Betriebsanleitung beachten.
- Patentierte Markierungen zur einfachen Feststellung der Ablegereife.
- Oberfläche phosphatiert.
- Wesentliche Produktmerkmale des ABA sind Gegenstand von Schutzrechtsanmeldungen.

Weitere wichtige RUD-spezifische Informationen und Besonderheiten zu unseren RUD-Zurrpunkten finden Sie in der jeweiligen Betriebsanleitung (www.rud.com).

L-ABA // Technische Daten

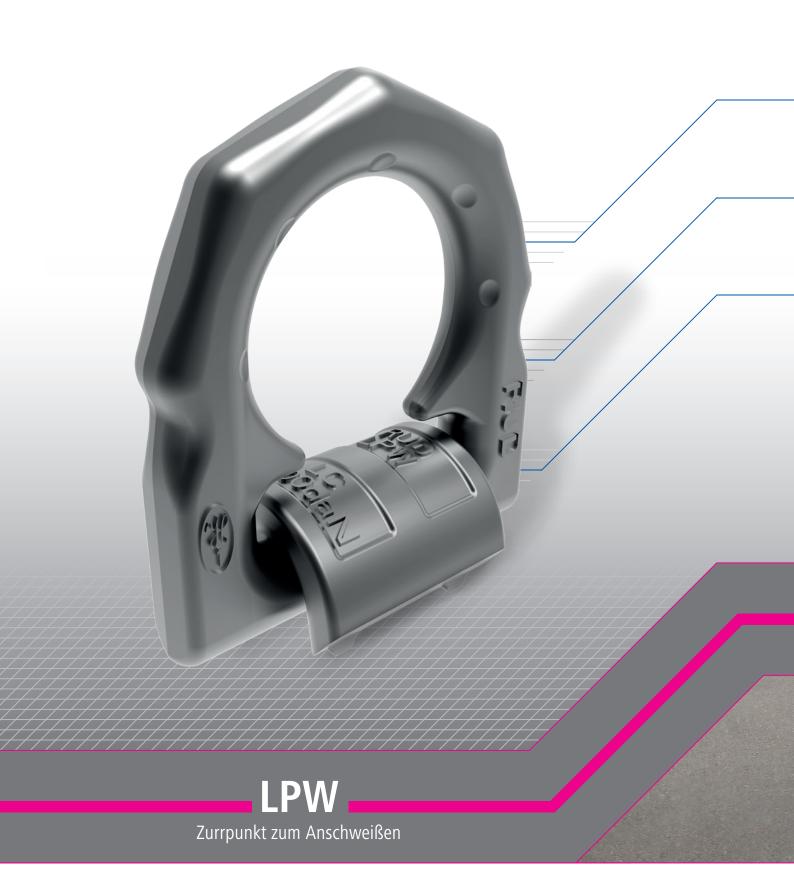
	Kurzbezeichnung	LC [daN]	Gewicht [kg/St.]	T [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	F [mm]	
L-ABA – Alls	seitig belastbar	er Zuri	punkt								
Marie .	L-ABA 2.000 daN	2.000	0,20	32	22	12	70	32	12	50	
	L-ABA 3.200 daN	3.200	0,45	42	30	16	100	35	16	57	
	L-ABA 6.400 daN	6.400	1,15	59	41	23	137	50	21	80	
	L-ABA 10.000 daN	10.000	2,26	72	51	27	172	60	28	99	
	L-ABA 20.000 daN	20.000	5,37	95	70	38	228	80	35	130	
				/	' / /	/ /	/ / /	' / /	/ /	/ / /	

L-ABA Allseitig belastbarer Zurrpunkt



Beachten Sie die Angaben in der Tabelle für Ladungsgewicht auf Seite 8.

Anwendungsspezifische Merkmale L-ABA


- / Einfache und schnelle Schweißmontage.
- Nachweis der Tieftemperatur-Eignung bis -40°C über Kerbschlagzähigkeit ist auf Anfrage (vor Auftragserteilung) möglich.
- Eignung für Feuerverzinkung nach Anschweißvorgang muss prozessbezogen analysiert und freigegeben wer-

Schweißnaht	BestNr.
a 3 ⊾	7909394
a 4 ⊾	7902667
a 6 ⊾	7902668
a 7 ⊾	7901722
a 8 ⊾	7901723
and the second s	

Technische Änderungen vorbehalten.

LPW

Zurrpunkt zum Anschweißen. Einsatzbereich: Ladefläche oder Ladung

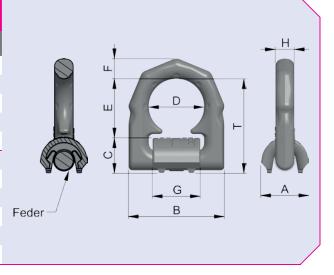
Produktmerkmale

- Deutliche Kennzeichnung der Zurrkraft für alle Belastungsrichtungen. LC-Kennzeichnung in daN.
- / Einhängebügel bis 180° schwenkbar.
- Distanznoppen am Anschweißklotz für den nötigen Luftspalt zur Wurzelschweißung.
- Einfache und prozesssichere Positionierung für die Schweißung durch vormontierte Einheiten aus Einhängeösen und Anschweißklötzen.
- Das Anschweißteil ist aus einem gut schweißbaren Werkstoff geschmiedet.
- Klemmfeder wirkt geräuschdämpfend und hält die Zurröse in der gewünschten Richtung; dadurch einfaches Einhängen des Zurrmittels möglich. Einfaches Lackieren durch Fixieren der Einhängeöse.
- Funktionsoptimierte Form der Einhängeöse für bessere Abstützung bei Seitenbelastung und Schutz der Klemmfeder.
- / Oberfläche phosphatiert.

LPW-U / LPW // Technische Daten

	Kurzbezeichnung	LC [daN]	Gewicht [kg/St.]	T [mm]	A [mm]	B [mm]	C [mm]	D [mm]	E [mm]	
LPW – Zurrpunkt zum Anschweißen – unverlierbar (-U)										
	LPW-U 3.000 daN	3.000	0,35	65	33	66	25	38	40	
	LPW-U 5.000 daN	5.000	0,47	75	36	77	27	45	48	
	LPW-U 8.000 daN	8.000	0,76	83	42	87	31	51	52	
	LPW-U 13.400 daN	13.400	1,9	117	61	115	44	67	73	
	LPW-U 20.000 daN	20.000	2,9	126	75	129	55	67	71	
The second second	LPW 3.000 daN *	3.000	0,35	65	33	66	25	38	40	
TO THE PARTY OF TH	LPW 5.000 daN *	5.000	0,47	75	36	77	27	45	48	
	LPW 8.000 daN *	8.000	0,76	83	42	87	31	51	52	
	LPW 13.400 daN *	13.400	1,9	117	61	115	44	67	73	
	LPW 20.000 daN *	20.000	2,9	126	75	129	55	67	71	
	LPW 32.000 daN *	32.000	6,8	174	96	190	69	100	105	

^{* =} ohne Klemmfeder



Beachten Sie die Angaben in der Tabelle für Ladungsgewicht auf Seite 8.

Anwendungsspezifische Merkmale LPW

Weitere wichtige RUD-spezifische Informationen und Besonderheiten zu unseren RUD-Zurrpunkten finden Sie in der jeweiligen Betriebsanleitung (www.rud.com).

F [mm]	G [mm]	H [mm]	Schweißnaht	BestNr.
14	33	14	HV5 + a 3 △	7992225
16	40	14	HV7 + a 3 ⊾	7994831
18	46	16	HV8 + a 3 △	7992226
24	60	22	HV12 + a 4 △	7992227
26,5	60	26	HV16 + a 4 △	7992228
14	33	14	HV5 + a 3 △	7993142
16	40	14	HV7 + a 3 △	7995430
18	46	16	HV8 + a 3 △	7993143
24	60	22	HV12 + a 4 △	7993144
26,5	60	26	HV16 + a 4 △	7993145
40	90	26	HV25 + a 6 △	7992229

Technische Änderungen vorbehalten.

Optimal für Kanten – erspart die Hälfte der Zurrpunkte.

LRBS-FIX

Der neue LRBS-FIX für den Einsatz auf Ladeflächen und an Ladungen.

LRBS-FIX // Technische Daten

48
60
65
90

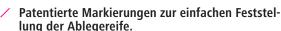
LRBK-FIX // Technische Daten

	Kurzbezeichnung	LC [daN]	Gewicht [kg/St.]	T [mm]	A [mm]	B [mm]	C [mm]	D [mm]	
LRBK-FIX –	- Lashing-Ring	bock sc	hweiß	oar für	90°-K	anten			
	LRBK-FIX 8.000	8.000	1,05	65	32	14	28	48	
	LRBK-FIX 13.400	13.400	2,16	84	40	20	35	60	
	LRBK-FIX 20.000	20.000	4,40	94	52	22	46	65	

LRBS-FIX

LRBK-FIX

Produktmerkmale

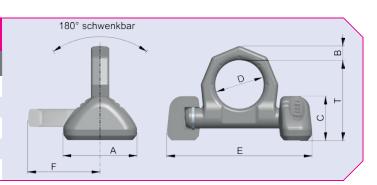


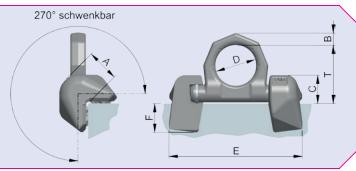
LRBK-FIX

- Deutliche Kennzeichnung der Zurrkraft für alle Belastungsrichtungen. LC-Kennzeichnung in daN.
- LRBS-FIX: Einhängebügel bis 180° schwenkbar. LRBK-FIX: Einhängebügel mit erweitertem Schwenkbereich.
- Geteilte Krafteinleitung durch Mehrpunkt-Befestigung.
- Durch die Schweißnahtanordnung (HY durchgehend) werden die Forderungen der DIN EN 1090 erfüllt, d.h. durch die geschlossene Naht können keine Spalt-Korrosionsansätze entstehen (damit für Konstruktionen im Freien einsetzbar). Die umlaufende Schweißnaht HY benötigt nur ein geringes Schweißvolumen.
- Klemmfeder wirkt geräuschdämpfend und hält die Aufhängeöse in der gewünschten Richtung; dadurch einfaches Einhängen des Zurrmittels möglich.

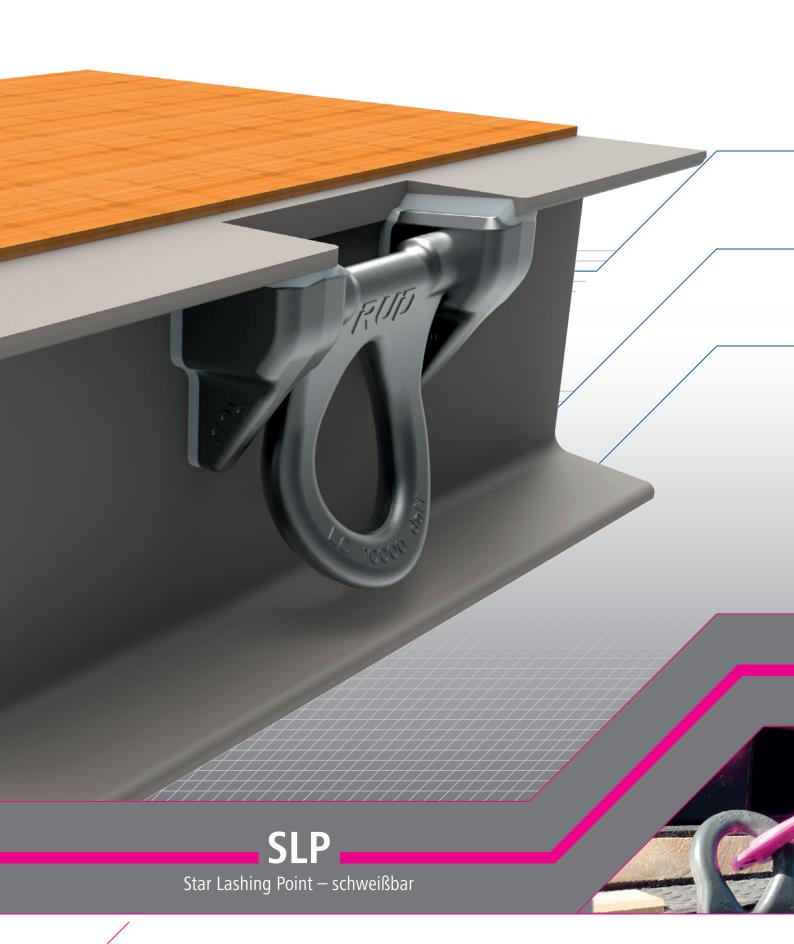
- Einfaches Lackieren durch Fixieren der Einhängeöse.
- Einfache und prozesssichere Positionierung für die Schweißung durch vormontierte Einheiten aus Einhängeösen und Anschweißklötzen.
- Das Anschweißteil ist aus einem gut schweißbaren Werkstoff geschmiedet.
- Oberfläche phosphatiert.
- Wesentliche Produktmerkmale von LRBS-FIX und LRBK-FIX sind Gegenstand von Schutzrechtsanmeldungen.

Weitere wichtige RUD-spezifische Informationen und Besonderheiten zu unseren RUD-Zurrpunkten finden Sie in der jeweiligen Betriebsanleitung (www.rud.com).




Der LRBS-FIX und LRBK-FIX werden in verschiedensten Zurrrichtungen verwendet. Beachten Sie die Angaben in der Tabelle für Ladungsgewicht auf Seite 9.

E [mm]	F [mm]	Schweißnaht	BestNr.
132	69	HY 3	7999303
167	91	HY 5	7999304
191	100	HY 6	7999305
267	134	HY 9	7999306


Technische Änderungen vorbehalten.

E [mm]	F [mm]	Schweißnaht	BestNr.
141	30	HY 4 + a 3 △	7903056
181	34	HY 5 + a 3 ⊾	7903057
212	46	HY 8 + a 3 △	7903058

Technische Anderungen vorbehalten.

Produktmerkmale

SLP

Allseitig belastbarer Anschweißpunkt zum Zurren. Anbringung seitlich; auch für überstehende Ladung.

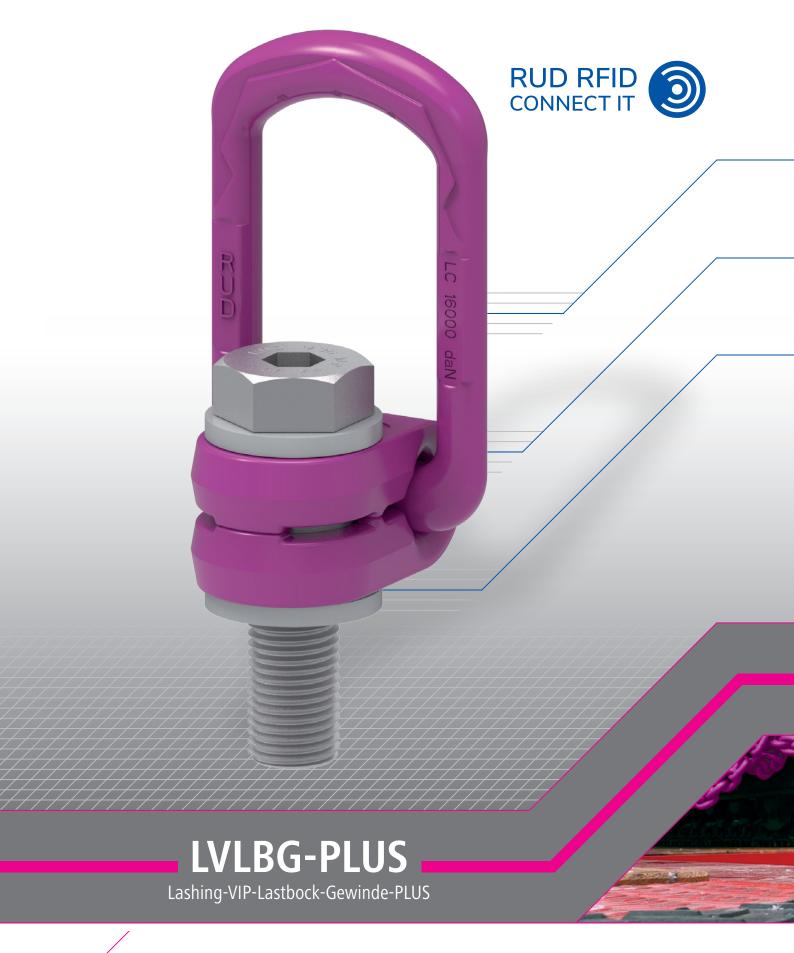
- ✓ Deutliche Kennzeichnung der Zurrkraft für alle Belastungsrichtungen. LC-Kennzeichnung in daN.
- Geteilte Krafteinleitung durch Mehrpunkt-Befestigung.
- Einhängebügel mit erweitertem Schwenkbereich.
- ✓ Optimal zum Zurren überbreiter Ladung.
- Einfache und prozesssichere Positionierung für die Schweißung durch vormontierte Einheiten aus Einhängeösen und Anschweißklötzen.

- Durch die Schweißnahtanordnung (HY durchgehend) werden die Forderungen der DIN EN 1090 erfüllt, d.h. durch die geschlossene Naht können keine Spalt-Korrosionsansätze entstehen (damit für Konstruktionen im Freien einsetzbar). Die umlaufende Schweißnaht HY benötigt nur ein geringes Schweißvolumen.
- Klemmfeder wirkt geräuschdämpfend und hält die Zurröse in der gewünschten Richtung; dadurch einfaches Einhängen des Zurrmittels möglich.
- / Einfaches Lackieren durch Fixieren der Einhängeöse.
- Das Anschweißteil ist aus einem gut schweißbaren Werkstoff geschmiedet.
- Wesentliche Produktmerkmale des SLP sind Gegenstand von Schutzrechtsanmeldungen.

Weitere wichtige RUD-spezifische Informationen und Besonderheiten zu unseren RUD-Zurrpunkten finden Sie in der jeweiligen Betriebsanleitung (www.rud.com).

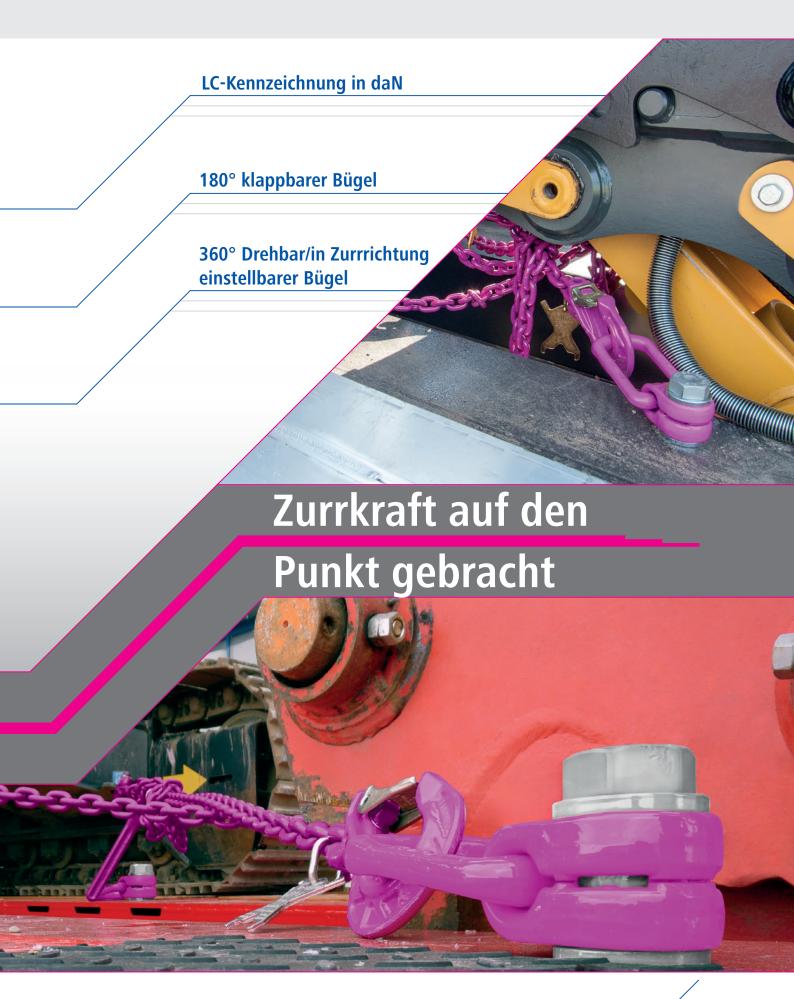
SLP // Technische Daten

SLP – Star L	Kurzbezeichnung ashing Point -	LC [daN] – schw		[mm]							
	SLP 10.000 daN	10.000	3,42	115	63	185	100	60	110	25	40



Beachten Sie die Angaben in der Tabelle für Ladungsgewicht auf Seite 10.

Schweißnaht	BestNr.	В	A	
HY 5 / a 5 ⊾	7903370			
		D	The state of the s	
		E		
	HY 5 / a 5 ⊾	Schweißnaht BestNr. HY 5 / a 5 ▶ 7903370	Schweißnaht BestNr. HY 5 / a 5 ▶ 7903370	Schweißnaht BestNr. HY 5 / a 5 № 7903370


Technische Änderungen vorbehalten.

Produktmerkmale

LVLBG-PLUS

schraubbarer Schwerlastzurrpunkt für Ladeflächen und Ladungen.

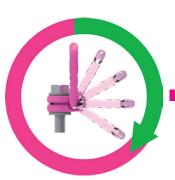
- Deutliche Kennzeichnung der Zurrkraft für alle Belastungsrichtungen. LC-Kennzeichnung in daN.
- Zurrpunkt 360° drehbar.
 Einhängebügel bis 180° schwenkbar.
- Allseitig voll belastbar

- Original-RUD-Schraube mit Spezialkorrosionsschutz Corrud-DT im Lieferumfang enthalten und als Ersatzteil erhältlich. Deutliche Kennzeichnung am Schraubenkopf: RUD, Gewindegröße, Charge, Festigkeitsklasse.
- Unverlierbare jedoch austauschbare Spezialschraube (dadurch wird das Risiko durch die Verwendung von ungeeigneten Standardschrauben minimiert).
- Klemmfeder wirkt geräuschdämpfend und hält die Zurröse in der gewünschten Richtung; dadurch einfaches Einhängen des Zurrmittels möglich.
- Variable Schraubenlängen für Einsatz in Gewinde- und Durchgangsbohrungen lieferbar.
- Schnelle und einfache Montage.

LVLBG-PLUS // Technische Daten

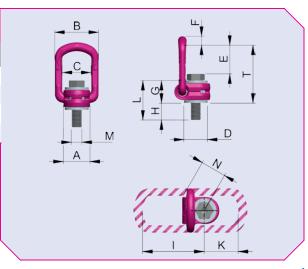
Kurzbezeichnung			Gewicht [kg/St.]									
LVLBG-PLUS	Lashing-VIP-La	stbo	ck-Gev	wind	de-P	LUS						
	L-VLBG-PLUS 16.000 daN	16.000	6,2	197	77	122	82	70	97	26,5	77	63
	L-VLBG-PLUS 16.000 daN *	16.000		197	77	122	82	70	97	26,5	77	36-223

* = mit variabler Länge, mit Mutter und Scheibe



LVLBG-PLUS

VIP-Lastbock-Gewinde zum Zurren

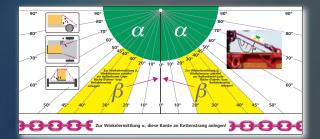


Anwendungsspezifische Merkmale LVLBG-PLUS

 Montage mit Gabel-, Ring- und Innensechskantschlüssel möglich. Weitere wichtige RUD-spezifische Informationen und Besonderheiten zu unseren RUD-Zurrpunkten finden Sie in der jeweiligen Betriebsanleitung (www.rud.com).

		L [mm]	M	N [mm]	Anzugsm. [Nm]	BestNr.
205	110	140	M36	87	800	7904778
205	110	113-300	M36	87	800	8600778

Technische Änderungen vorbehalten.




RUD Ketten Rieger & Dietz GmbH u. Co. KG Friedensinsel 73432 Aalen/Germany Tel. +49 7361 504-1464 · Fax +49 7361 504-1171 sling@rud.com · www.rud.com

Optimale Ladungssicherung mit RUD!

Winkelmesser und Tabelle für Nieder- und Direktzurren.

Bestell-Nr.: 7996327

Die RUD-Lasi-APP

Winkelmesser und Berechnungsprogramm.

www.rud.com CAD – Daten Zurrpunkte

